A learning-based approach for solving wall shear stresses from Shear-Sensitive Liquid Crystal Coating (SSLCC) color images is presented in this paper. The approach is able to learn and establish the mapping relationship between the SSLCC color-change responses in different observation directions and the shear stress vectors, and then uses the mapping relationship to solve wall shear stress vectors from SSLCC color images. Experimental results show that the proposed approach can solve wall shear stress vectors using two or more SSLCC images, and even using only one image for symmetrical flow field. The accuracy of the approach using four or more observations is found to be comparable to that of the traditional multi-view Gauss curve fitting approach; the accuracy is slightly reduced when using two or fewer observations. The computational efficiency is significantly improved when compared with the traditional Gauss curve fitting approach, and the wall shear stress vectors can be solved in nearly real time. The learning-based approach has no strict requirements on illumination direction and observation directions and is therefore more flexible to use in practical wind tunnel measurement when compared with traditional liquid crystal-based methods.
Read full abstract