Linear stability analysis currently fails to predict turbulence transition in canonical viscous flows. We show that two alternative models of the boundary condition for incipient perturbations at solid walls produce linear instabilities that could be sufficient to explain turbulence transition. In many cases, the near-wall behaviour of the discovered instabilities is empirically indistinguishable from the classical no-slip condition. The ability of these alternative boundary conditions to predict linear instabilities that are consistent with turbulence transition suggests that the no-slip condition may be an overly simplified model of fluid–solid interface physics, particularly as a description of the flow perturbations that lead to turbulence transition in wall-bounded flows.