The basics of metallography and modern systems used for studying and analyzing the structures of materials are described. Special attention is paid to the techniques of quantitative microscopy, as a kind of ancestress of modern microstructure analysis systems. The analysis of modern computer programs used to analyze images of microstructures obtained from digital microscopes is presented. The basics of fractal analysis as a highly effective tool for calculating numerical values of parameters of geometrically complex objects are outlined. Using the example of the analysis of graphitized cast iron structure, the application of the fractal analysis method to determine such characteristics of the graphite phase as the shape of graphite inclusions and their distribution in the alloy volume is demonstrated. As part of the study, various classes of cast iron have been studied, such as graphitic pig iron with flaked graphite, cast iron with vermicular graphite, and high-grade cast iron with spheroidal graphite. To determine the shape of graphite inclusions, a fractal dimension has been proposed to be used, and the unevenness of the distribution has been estimated using such a function as lacunarity. The individual stages of determining these characteristics using a specialized FracLac module applied in the structure of the ImageJ program are presented. The obtained results showed high adequacy. Despite positive assessment, the shortcomings identified during the research on the use of fractal analysis methods for identifying geometrically complex dimensional and topological parameters inherent in the graphite phase in cast iron are noted. The ways for further improvement of these methods for solving a wide range of problems in metallography of alloys are proposed.