Continuum manipulators with controllable shape and exerting force are attractive devices. Utilizing great features of shape memory alloys (SMAs), thin continuum modules are developed. SMAs are embedded around an elastic rod and activated through a control algorithm to set a desired shape. However, complex behavior of SMAs in such a multi-input multi-output system, make the control challenging. Additionally, simultaneous control of position and the force applied by the module, as a challenging problem, has not been investigated so far. Handling this problem may increase the application of continuum robots when utilized as manipulators or when pass through narrow and complex canals with sensitive wall. In this research, position and force control of such continuum module is under focus for achieving a more practical tool for better non-invasive medical devices. Further to the position control, the amount of force applied to the environment is adjusted in different locations of the workspace through a novel fuzzy controller. The results indicate the possibility of simultaneous control of the position and force using fuzzy controller with a reasonable accuracy of 0.5° for angle and 0.05 N for the force. The concluded results may be utilized in developing smarter soft robots.
Read full abstract