IntroductionKienböck's disease is generally defined as the collapse of the lunate bone, and this may lead to early wrist osteoarthritis. Replacing the collapsed lunate with an implant has regained renewed interest with the advancing technology of additive manufacturing, enabling the design of patient-specific implants. The aims of this project are (1) to determine how accurate it is to use the contralateral lunate shape as a template for patient-specific lunate implants, and (2) to study the effects of shape variations wrist kinematics using 4D-computed tomography (CT) scanning.MethodsA 3D statistical shape model (SSM) of the lunate was built based on bilateral CT scans of 54 individuals. Using SMM, shape variations of the lunate were identified and the intra- and inter-subject shape variations were compared by performing an intraclass correlation analysis. A radiolucent motor-controlled wrist-holder was designed to guide flexion/extension and radial/ulnar deviation of ex vivo wrist specimens under 4D-CT scanning. In this pilot, three shape mode variations were tested per specimen in two specimens were. After post-processing each CT, the scapholunate angle (SLA) and capitolunate angle (CLA) were measured.ResultsThe shape of the lunate was not symmetrical, defined as exceeding the intra-subject variation in five different shape modes. The FE tests show a generalized increase in scapholunate and capitolunate angle when using lunate implants, and comparing variation of shape modes showed that shape mode 3 has a significant effect on the measured angles (p<0.05).DiscussionThe design of patient-specific lunate implants may prove to be challenging using a ‘mirror’-design as it will lead to a degree of shape asymmetry. The pilot study, to determine the effects of those shape variations on wrist kinematics suggest that the degree of shape variation observed indeed may alter the wrist kinematics, although this needs to be further investigated in study using more specimens.
Read full abstract