Ship-induced waves are an increasingly relevant hydrodynamic forcing factor in waterways travelled by large seagoing ships. The discrepancy between the small-scale wave-structure interaction near embankments and the larger-scale wave generation and propagation poses challenges for the prediction of ship-induced waves as a multi-scale problem. Therefore, a novel hydrodynamic coupling interface is presented that allows information transfer from the shallow-water-equation (SWE) solver REEF3D::SFLOW to the 3D-RANS-solver REEF3D::CFD. The implementation consists of a one-way coupling, where the solution from the SWE solver is imposed to one or multiple relaxation zones of the CFD solver. A series of verification cases shows that the implementation of the interface is accurate and only small deviations are introduced due to the 2D-3D dimensional mismatch of the numerical models involved. An application is presented, showing how the coupled SWE-CFD model can be employed to study ship-induced groin overtopping.