Nearly 5700 plants of 14 cultivated and 8 wildAllium species and varieties from the Netherlands and other parts of the world, were tested for infection with aphid-borne potyviruses by ELISA, electron microscope decoration tests and/or inoculation onto test plants. This resulted in the detection of two known viruses, viz. leek yellow stripe virus (LYSV) and onion yellow dwarf virus (OYDV), and the discovery and characterization of two new viruses, viz. shallot yellow stripe virus (SYSV) and Welsh onion yellow stripe virus (WoYSV), and of six strains of these viruses. ‘Garlic mosaic’, ‘barlic yellow streak’, ‘onion mosaic’, ‘shallot mosaic’, ‘shallot X’, and ‘shallot yellows’ viruses, incompletely described in the literature, are now reidentified as well-known viruses or as strains or mixtures of such viruses. ‘Garlic yellow stripe virus’ is also a complex containing a potyvirus possibly differing from the viruses found in this survey. The symptoms of the potyviruses studied varied widely and ranged from mild to severe chlorotic to yellow striping of leaves, and they are of little diagnostic importance. LYSV was found in vegetatively propagated pearl onion (A. ampeloprasum var.sectivum) from Europe and Asia. It has decreased in leek crops (A. ampeloprasum var.porrum) in the Netherlands since the 1970, apparently due to resistance in new cultivars. OYDV was common in onion (A. cepa var.cepa) from the former USSR and North Africa, and in European cultivars of shallot (A. cepa var.ascalonicum), with the exception of the highly resistant ‘Sante’, but was not detected during this survey in Asian shallot. European samples of ever-ready onion (A. cepa var.perutile), multiplier onion (A. cepa var.aggregatum) and tree onion (A. cepa var.viviparum) contained OYDV. It was also found in sand leek (A. scorodoprasum) from european gene collections. A strain of OYDV from onion and shallot in Morocco and Spain was virulent on onion and shallot cultivars resistant to common OYDV, as reported early for a similar isolate in the USA. Asian shallot appeared generally infected with the new SYSV, similar to OYDV in host range and symptoms but serologically distinct. It was not detected in onion and shallot from Europe or North Africa. A virulent strain of this virus caused striping in sap-inoculated garlic (A. sativum) and Formosan lily (Lilium formosanum). The new WoYSV, infecting Welsh onion in Indonesia and Japan, was earlier described in Japan as OYDV from rakkyo and Welsh onion. It appeared serologically closely related to SYSV and distantly to OYDV, but differed in its host range. Host-specific strains of LYSV and OYDV were detected in garlic, wild garlic (A. longicuspis), an unidentifiedAllium species (suffix-G), and great-headed garlic (A. ampeloprasum var.holmense) (suffix-GhG)., LYSV-G and OYDV-G infected on average 45% and 73%, respectively, of the garlic samples of worldwide origin. Symptoms of isolates of both strains varied in severity, implying the necessity of serological tests for disease diagnosis and health certification. LYSV-GhG was the cause of yellow striping in 93% of the great-headed garlic plants tested, mainly from the Mediterranean area. One sample was also infected with OYDV-GhG. Many samples from vegetatively propagated crops grown from non-certified planting stock contained a few plants free of potyviruses, implying the possibility to obtain healthy (and possibly resistant) selections of such cultivars avoiding meristem-tip culture. Cross-protection of garlic sets by a mild potyvirus isolate seems to be an alternative to the use of vulnerable virus-free sets. Generally, viruses and virus strains could not be transmitted to anyAllium species other than their natural host, except to the highly susceptible crow garlic (A. vineale). This species, and other predominantly vegetatively propagating wildAllium spp. (field garlic,A. oleraceum; ramsons,A. ursinum; sand leek), were found not to be reservoirs of viruses that might infectAllium crops in the netherlands. Streaking in vegetatively propagated wild leeks (A. ampeloprasum and closely related species) originating from the Mediterranean area and Asia was due to an undescribed miteborne virus. The survey confirmed that spread of potyviruses inAllium crops in the Netherlands is from planting sets, and from a neighbouring crop only if of the same species.
Read full abstract