Cyclic GMP-AMP synthase (cGAS) is a key innate immune sensor that recognizes cytosolic DNA to induce immune responses against invading pathogens. The role of cGAS is conventionally recognized as a nucleotidyltransferase to catalyze the synthesis of cGAMP upon recognition of cytosolic DNA, which leads to the activation of STING and production of type I/III interferon to fight against the pathogen. However, given that hepatocytes are lack of functional STING expression, it is intriguing to define the role of cGAS in hepatocellular carcinoma (HCC), the liver parenchymal cells derived malignancy. In this study, we revealed that cGAS was significantly downregulated in clinical HCC tissues, and its dysregulation contributed to the progression of HCC. We further identified cGAS as an immune tyrosine inhibitory motif (ITIM) containing protein, and demonstrated that cGAS inhibited the progression of HCC and increased the response of HCC to sorafenib treatment by suppressing PI3K/AKT/mTORC1 pathway in cellular and animal models. Mechanistically, cGAS recruits SH2-containing tyrosine phosphatase 1 (SHP1) via ITIM, and dephosphorylates p85 in phosphatidylinositol 3-kinase (PI3K), which leads to the suppression of AKT-mTORC1 pathway. Thus, cGAS is identified as a novel tumor suppressor in HCC via its function independent of its conventional role as cGAMP synthase, which indicates a novel therapeutic strategy for advanced HCC by modulating cGAS signaling.
Read full abstract