ABSTRACT Introduction Preeclampsia is a serious pregnancy complication that can lead to life-threatening conditions such as seizures, strokes, and even death. A dysregulated inflammatory response in the placenta plays a crucial role in the development of preeclampsia. Cordycepin, known for its anti-inflammatory and antioxidant properties, was the focus of this study, which aimed to investigate its effects on preeclampsia. Methods A preeclampsia-like rat model was established via tail vein injection of lipopolysaccharides (LPS) at a dose of 1 μg/kg in pregnant rats. These rats were then treated with cordycepin at doses of 5, 25, or 50 mg/kg from embryonic day 6 (E6) today 18 (E18). Systolic blood pressures and urinary protein levels were monitored, and pregnancy outcomes, such as fetal body length and weight, were measured. The expression of target genes or proteins was assessed by qPCR, ELISA, and Western blot. Results Our findings revealed that cordycepin significantly reduced systolic blood pressure and proteinuria in preeclampsia-like rats. Additionally, cordycepin improved pregnancy outcomes, as shown by increased fetal body length and weight. The treatment also lowered serum sFlt-1 levels, elevated PIGF levels, decreased placental pro-inflammatory cytokine levels (IL-1β, TNF-α, IL-6, MCP-1, and MIP-2), and raised levels of anti-inflammatory cytokine IL-10 level in preeclampsia-like rats. Furthermore, cordycepin helped restore macrophage population imbalances, increasing M1-type macrophage markers (iNOS, TNF-α, and IL-1β) and reducing M2-type macrophage markers (Arg 1, IL-10, and TGF-β). Conclusion This study suggests that cordycepin alleviates LPS-induced preeclampsia by reducing placental inflammation and correcting the M1/M2 macrophage imbalance, offering potential therapeutic benefits for managing preeclampsia.