Commercial panels of microsatellite (STR) loci are focused on the use of DNA of the domestic dog (Canis lupus familiaris) and are often inapplicable for genotyping the DNA of the gray wolf (Canis lupus lupus). We propose a CPlex test system, including one hexa- and 12 tetranucleotide autosomal STR loci, as well as two sex loci, that is equally efficient in DNA identification of biological samples of the wolf and the dog. Analysis of molecular variance between samples revealed significant differentiation values (FST = 0.0784, p < 0.001), which allows to use the panel to differentiate wolf and dog samples. Population subdivision coefficients (θ-values) were calculated for each of the 13 STR loci of the developed test system. It was shown that the values of the genotype frequency for dogs and wolves, without and with considering the θ-value, differ by three orders of magnitude (for dogs 8.9 × 10-16 and 2.1 × 10-14 and for wolves 1.9 × 10-15 and 4.5 × 10-14, respectively). The use of population subdivision coefficients will allow to identify the most reliable results of an expert identification study and the power of exclusion provided by the STR loci of the CPlex test system makes it possible to achieve a reliable level of evidence in forensic DNA analysis of both wolves and dogs. The test system has been validated for use in forensic identification of the dog and wolf based on biological traces found at crime scenes, as well as for individual identification and establishing biological relationship of animals of these species.
Read full abstract