The oxytocin (OT) system, affected by life experiences, modulates neuron morphology in a sex-specific manner, leading to sex differences in social interactions. To date, few studies have focused on the OT system and social interactions of female mice. In this study, we used maternal deprivation (MD) and its possible treatment, environmental enrichment (EE), to affect social recognition in female BALB/c mice. We checked neuron morphology, synaptic connections, oxytocinergic (OTergic) neurons in the hypothalamus paraventricular nucleus (PVH), and OT receptor (OTR) in the basolateral amygdala (BLA) and layer II/III of the prelimbic cortex (PL). Our results showed that MD induced social recognition impairments, increased OTR levels in the BLA, and, meanwhile, reduced OTergic neurons in the magnocellular region of the PVH (mPVH). Decreased Nissl bodies, increased cell nuclei, and increased dendrites of projection neurons paralleled the increased OTR levels in the BLA of MD mice. EE restored MD-induced the impairments of novel object recognition and sociability; this effect paralleled a decrease in cell density in the PL and an increase in OTergic neurons in the parvocellular regions of the PVH and synaptic connections in the BLA and layer II/III of the PL. Our findings indicate that early life stress such as MD impairs social recognition, and meanwhile, remodels neuron morphology region-specifically in the female brain, apparently in the BLA but slightly in the PL; and EE could partially restore the deficits induced by MD. The results provide new insights into sex differences in the prevalence of psychological development disorders.
Read full abstract