Uterus transplantation (UTx) is an emerging therapy for women with uterine infertility. However, critical questions remain with this procedure including the mechanisms involved in graft rejection. In this study, we analyzed the immune profile of ectocervical biopsies from 5 patients after UTx before and during their first episode of rejection using RNA sequencing, quantitative polymerase chain reaction, and imaging mass cytometry. We identified 530 upregulated and 207 downregulated genes associated with graft rejection. Enrichment databases revealed abnormalities of skin-associated genes and the immune system, in particular activation of T and B lymphocytes, and macrophages. Imaging mass cytometry confirmed these observations; in cervical biopsies of 3 women, rejection was associated with the presence of B-cell structures linked to tertiary lymphoid structures, and 2 biopsies from 1 woman with severe rejection episodes and poor prognosis of graft function (repeated miscarriage and implantation failures) were associated with an accumulation of HLA-DR- macrophages, producing granzyme B at the surface of the epithelium. We showed that rejection of a UTx graft was associated with major alterations of immune markers including the involvement of tertiary lymphoid structures, the most organized of which may be a sign of chronic rejection, and with an increase in HLA-DR- macrophages expressing granzyme B in the case of grade 3 rejection episodes according Mölne's classification. We identified potential emerging biomarkers to predict or diagnose graft rejection (Keratin 1 granzyme B, IL1β). These findings could lead to development of improved strategies for the identification, prevention, and/or treatment of uterus graft rejection.
Read full abstract