The Arborea plain in Sardinia (Italy) is classified as a nitrate vulnerable zone (NVZ). In the present study, the individual work steps that are necessary to progress from the existing 3D hydrogeological model to a 3D numerical groundwater model using the interactive finite-element simulation system FEFLOW 7.4 are shown. The results of the transient flow model highlight the influence of the drainage network on the overall groundwater management: the total water volume drained by the ditches accounted for approximately 58% of the annual outflow volume. The numerical transport simulations conducted from 2012 to 2020 using hypothetical field-based nitrate input scenarios globally underestimated the high concentrations that were observed in the NVZ. However, as observed in the field, the computed nitrate concentrations in December 2020 still varied strongly in space, from several mg L−1 to several hundreds of mg L−1. The origin of these remaining local hotspots is not yet known. The modeling of rainfall fluctuations under the influence of climate change revealed a general long-term decline in the groundwater level of several tens of centimeters in the long term and, in conjunction with a zero-nitrate scenario, led to a significant decrease in nitrate pollution. Although hotspots were attenuated, the concentrations at several monitoring wells still exceeded the limit value of 50 mg L−1.
Read full abstract