We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. This measurement is made from observations of 2540 deg$^2$ of sky with arcminute resolution at $150\,$GHz, and improves upon previous measurements using the SPT by tripling the sky area. We report CMB temperature anisotropy power over the multipole range $650<\ell<3000$. We fit the SPT bandpowers, combined with the seven-year Wilkinson Microwave Anisotropy Probe (WMAP7) data, with a six-parameter LCDM cosmological model and find that the two datasets are consistent and well fit by the model. Adding SPT measurements significantly improves LCDM parameter constraints; in particular, the constraint on $\theta_s$ tightens by a factor of 2.7. The impact of gravitational lensing is detected at $8.1\, \sigma$, the most significant detection to date. This sensitivity of the SPT+WMAP7 data to lensing by large-scale structure at low redshifts allows us to constrain the mean curvature of the observable universe with CMB data alone to be $\Omega_k=-0.003^{+0.014}_{-0.018}$. Using the SPT+WMAP7 data, we measure the spectral index of scalar fluctuations to be $n_s=0.9623 \pm 0.0097$ in the LCDM model, a $3.9\,\sigma$ preference for a scale-dependent spectrum with $n_s<1$. The SPT measurement of the CMB damping tail helps break the degeneracy that exists between the tensor-to-scalar ratio $r$ and $n_s$ in large-scale CMB measurements, leading to an upper limit of $r<0.18$ (95%,C.L.) in the LCDM+$r$ model. Adding low-redshift measurements of the Hubble constant ($H_0$) and the baryon acoustic oscillation (BAO) feature to the SPT+WMAP7 data leads to further improvements. The combination of SPT+WMAP7+$H_0$+BAO constrains $n_s=0.9538 \pm 0.0081$ in the LCDM model, a $5.7\,\sigma$ detection of $n_s < 1$, ... [abridged]
Read full abstract