Dexterity in human hand is connected with the fingertip rolling ability. In this work we consider rolling motion of spherical robotic fingertips as one of the control objectives together with the set point position control and force trajectory tracking. The generation of a rolling motion trajectory is proposed and a control solution is designed which achieves prescribed transient and steady state tracking behavior. The proposed control law is structurally and computationally simple and does not utilize the dynamics of the robot model or its approximation. A simulation of a five degrees of freedom robot show excellent contact rolling performance even at cases of adverse friction conditions while alternative controllers lead to contact sliding. Experiments with a KUKA LWR4 + are performed to validate the proposed method.