Silicone rubbers are relatively new in additive manufacturing, with only a few commercial printing services and reports on custom-built printers available. Publications and standards on calibration and accuracy assessment are especially lacking. In this study, the printhead calibration process of a custom-built silicone printer is explained, and a set of test objects is proposed and evaluated. The printer in use is based on an open-source filament printer, capable of multi-material printing with silicone rubbers and thermoplastic polymers. Three different high-viscosity single-component liquid silicone rubbers and one polylactic acid thermoplastic filament were used as printing materials. First, the calibration process of the silicone printhead was conducted, and the dependency of the dosing accuracy on silicone viscosity, nozzle diameter and extrusion speed was evaluated. Second, various test specimens were proposed and printed to characterize the accuracy and geometric limitations of this printer. These test parts contained features such as thin walls, slender towers, small holes and slots, unsupported overhangs and bridges. It was concluded that silicone viscosity strongly affects geometric inaccuracies. Design recommendations were deducted from the results, advising for wall thicknesses above 1 mm, slenderness ratios below 2, bridging lengths below 2 mm and unsupported overhang angles below 30°.
Read full abstract