Ray-tracing simulations, validated by experimental results, demonstrate that high intensity collimated x-ray beams can be produced from an isotropic x-ray source. A spherically bent mica crystal was used to collimate and monochromatize x rays emitted by a femtosecond laser-produced plasma. The result is a short pulse x-ray beam with a high degree of collimation (less than 1 mrad divergence), good spectral resolution (10−2<Δλ/λ<10−4), and tunability over a wide spectral range. The role of the experimental parameters in the resulting beam divergence is thoroughly analyzed by ray-tracing modeling. These simulations are validated by test experiments. The ray-tracing calculations define a set of boundaries in the experimental parameters, which will guarantee the achievement of collimated beams better than 1 mrad in further experiments.