Microcalorimetry, designed for the independent measurement of enthalpy and heat capacity, has been commercially available for a considerable time. However, heat-related states in samples, especially liquids, can introduce complicated phenomena and challenging measurement and data evaluation processes. Such complexity becomes apparent when observing fluctuations in thermal capacity (Cp) while measuring heat consumption (Q) during water evaporation. This paper presents a continuous heat pulse measurement (CHPM) method for concurrently analyzing Q and Cp in a single test using microcalorimetry. The sample droplet of 400 nL was directly dispensed on the microcalorimeter surface, followed by a light-emitting diode (LED) radiation generating heat to perform CHPM. We repetitively heated the microcalorimeter using heat pulses provided by LED irradiation, with their duration set to 100 ms and 10s repetition, while measuring the temperature response of the microcalorimeter sensor. A MATLAB-based simulation model was established to validate the accuracy of our Cp measurements, which show its value of 0.79% of minimum variance. Water evaporation coupled with simultaneous salt crystallization served as our study model, where the Cp values were calculated from real-time responses to heat pulses provided by LED. The experimental outcomes confirm the suitability of CHPM in extracting key thermal properties and emphasize its versatility as a diagnostic tool, providing a significant method for research and applications in the fields of physics, engineering, and beyond.
Read full abstract