The purpose was to improve the limitations of traditional entrepreneurship education, realize the virtual interactive learning between college students and teachers, and stimulate students’ exploration of entrepreneurship. This work first discusses the working principle of Virtual Reality (VR) and builds an Interactive Learning Model (ILM) using VR. Then, the VR-ILM is used to design the Smart Space services. Harris Corner Detector (HCD) is used to detect the pixel grayscale change in the Smart Space image window. Further, the VR-ILM-based Smart Space is proposed according to the Smart Space design requirements and principles. Finally, the proposed VR-ILM-based Smart Space is applied to College Entrepreneurship Education (CEE). Its impact on the CEE market, employment in different industries, and students’ satisfaction with CEE are studied. The results show that the proposed VR-ILM-based Smart Space has increased the entrepreneurship teaching courses, entrepreneurship coaching activities, and entrepreneurship practice activities by 4, 6, and 24%, respectively. It has reduced entrepreneurship competitions and other forms of entrepreneurship education by 4 and 16%. The proposed VR-ILM-based Smart Space has dramatically improved the practical teaching of CEE. Meanwhile, real estate services have felt the most significant impact of the proposed VR-ILM-based Smart Space, with an employment increase of 43%. Lastly, students’ satisfaction with entrepreneurship education practice and teaching methods has increased by nearly 50%. The satisfaction with the internal environment has increased to 78%. The satisfaction with the curriculum system, teachers, and industry financing has increased from 30 to 45%, 24 to 36%, and 45 to 63%, respectively. The satisfaction with the teaching goal has increased to 62%. Thus, the proposed VR-ILM-based Smart Space has dramatically improved students’ satisfaction with CEE and has a different impact on the market, industry, and satisfaction with CE. The finding has a certain reference for the VR interactive model.
Read full abstract