This study investigated the effects of palmitoleic acid (POA) consumption on liver function, intestinal microbiota, and trimethylamine-N-oxide (TMAO) levels in the serum of mice treated with 3% L-carnitine drinking water. The purpose was to highlight the impact of POA on liver injury associated with high L-carnitine intake. A correlation analysis was carried out. The physiological and biochemical results showed that the administration of POA could alleviate liver injury induced by high L-carnitine ingestion, as reflected by a reduction in liver function indices (ALT, AST, AKP, and TBA activities) and modulation of antioxidant enzyme activities (SOD, GSH-Px, MDA, and RAHFR). The study also monitored the levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). Additionally, to assess the impact of POA on intestinal microbiota, we conducted a 16S rRNA high-throughput sequencing analysis. The findings indicated that POA administration resulted in lower levels of TMAO in treated mice. Furthermore, POA could regulate the composition of intestinal microbiota in L-carnitine mice, particularly affecting Bacteroides vulgatus, Parabacteroides distasonis, Alistipes shahii, Lachnospiraceae NK4A136 group, and Parasutterella secunda, which were closely related to liver injury. In summary, POA could repair liver damage caused by high intake of L-carnitine by regulating the distribution of intestinal flora and subsequently decreasing serum TMAO levels.
Read full abstract