Phenotypic expression of metabolic syndrome is precipitated by environmental variables along with the individual genetic susceptibility to the obesogenic environment and growing body of evidence suggest a paramount role of adipocytokines. Therefore, identifying the genetic influence on circulation leptin levels and clarifying genotype-phenotype correlation of rs1137101 {Leptin receptor gene (LEPR) Gln223Arg (Q223R; A668G)} in metabolic syndrome were the primary objective of this study. A total of 447 adult participants, including 214 metabolic syndrome patients and 233 healthy controls, were genotyped using polymerase chain reaction-restriction fragment length polymorphism method to unravel the effects of genetic risk loci {Leptin receptor gene; Gln223Arg (Q223R; A668G); rs1137101} on the occurrence of metabolic syndrome in consort with circulation leptin levels. Suitable descriptive statistics was used for different variables. The genotype frequencies were found to be in Hardy-Weinberg equilibrium for both cases (p > 0.2722) as well as in controls (p > 0.2331). However, genotype (x2: 11.26, 2 d.f. p = 0.0036) and allele distribution (x2: 10.51, 2 d.f. p: 0.0012) of the LEPR Gln223Arg (Q223R; A668G) differed significantly between cases and controls. Gln/Arg genotype (OR = 1.6099; 95% CI = 1.0847-2.3893; p value = 0.0181), Arg/Arg genotype (OR = 2.8121; 95% CI = 1.4103-5.6074; p value = 0.0033) and R allele (OR = 1.5875; 95% CI = 1.1996-2.1008; p value = 0.0012) were significantly associated with increased risk of metabolic syndrome in univariate analysis. Further a multivariate logistic regression adjusted for potential confounders showed that Arg/Arg genotype (OR = 1.9; 95% CI = 1.271-2.639; p-value < 0.05) and Gln/Arg (OR: 1.3; 95% CI = 0.873-2.034; p value < 0.05) have a significant risk for the occurrence of the metabolic syndrome. A progressive increase in the serum leptin levels from major homozygous alleles to minor homozygous alleles were observed indicating that rs1137101 modify the serum leptin concentrations in patients with metabolic syndrome. These findings provide enough evidence of a significant association of LEPR Gln223Arg (Q223R; A668G) polymorphism in the LepR gene in Indian patients with increased risk of metabolic syndrome for R allele and Arg/Arg homozygote. Thus, rs1137101 might be a pleiotropic locus for metabolic syndrome and its components in studied population.
Read full abstract