Accurate efficacy evaluation of bone metastases (BMs) from breast cancer (BC) is an intractable issue in clinical practice, for which solutions are urgently needed. This study aimed to investigate the utility of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) in the response evaluation of bone metastasis of BC. In total, 22 patients diagnosed with BC and BM were enrolled. These patients underwent repeated 18F-FDG PET/CT evaluations. The patients and each BM site were divided into two groups based on their response to treatment: progressive disease (PD) and nonprogressive disease (non-PD). We analyzed and compared the changes in PET and CT images, as well as the serum concentration of carcinoembryonic antigen (CEA), carbohydrate antigen 153 (CA153), alkaline phosphatase (ALP), and calcium (Ca) over the same time frame. The immunohistochemistry (IHC) of primary lesions between groups and between the primary focus and BM with high 18F-FDG uptake were compared and analyzed. Maximum standard uptake value (SUVmax) after therapy [area under the curve (AUC): 0.932] and Δ-value of SUVmax (AUC: 0.811) on 18F-FDG PET imaging proved significantly valuable for the efficacy of therapy outcomes related to BM lesions (P<0.05). In terms of overall evaluation of BM, age and human epidermal growth factor receptor 2 (HER2) expression were significantly lower in the PD group than in the non-PD group (P<0.05). There were marked differences in CEA after therapy, the changes of CEA, and CA153 (∆-value) between the groups (P<0.05). The SUVmax and Ca concentration after therapy and ∆-value of SUVmax, along with the levels of CA153, CEA, and ALP, were valuable indicators for evaluating the efficacy of individual BMs (P<0.05). IHC of BM in the PD group showed differences compared to primary lesions, with antigen Ki-67 being downregulated in metastatic lesions and HER2 being downregulated in a portion of BMs (2 of 6). Meanwhile, the expression of estrogen receptor (ER) and progesterone receptor (PR) remained relatively unchanged. 18F-FDG PET/CT confers precise assessment of the posttreatment efficacy pertaining to BM in BC. This modality facilitates the identification of poor effect lesions following extant therapies and localization for pathological assessment and may substantially contribute to evaluating therapeutic efficacy, refining treatment strategies, and predicting the disease trajectory of patients with BC and BM.
Read full abstract