A small subset of testicular sex cord-stromal tumors, designated as Sertoli-stromal cell tumors (SSCTs), comprises a mixture of Sertoli, spindle, and/or Leydig cells. The clinicopathologic features of these tumors have not been studied in any detail, and their molecular features are unknown. We, therefore, assessed the morphologic and genomic features of 14 SSCTs, including 1 tumor with features similar to the ovarian Sertoli-Leydig cell tumor (SLCT) with retiform tubules. The median age of the patients was 24 years (range, 10-55 years), and the median tumor size was 2.3 cm (range, 0.7-4.7 cm). All tumors showed Sertoli-like sex cord cells arranged in variably developed tubular structures, typically also forming nests and cords. These imperceptibly blended with a neoplastic spindle cell stroma or, in the SLCT, vacuolated to eosinophilic Leydig cells. Genomic analysis demonstrated the presence of a hotspot loss-of-function DICER1 mutation in the SLCT (patient 1) and hotspot gain-of-function CTNNB1 mutations in the tumors of patients 2 and 3, with both CTNNB1 variants being interpreted as possible subclonal events. The mutations were the only relevant findings in the tumors of patients 1 and 2, whereas the tumor of patient 3 harbored concurrent chromosomal arm-level and chromosome-level copy number gains. Among the remaining 11 tumors, all of those that had interpretable copy number data (9 tumors) harbored multiple recurrent chromosomal arm-level and chromosome-level copy number gains suggestive of a shift in ploidy without concurrent pathogenic mutations. The results of the present study suggest that CTNNB1 mutations (likely subclonal) are only rarely present in SSCTs; instead, most of them harbor genomic alterations similar to those seen in testicular sex cord-stromal tumors with pure or predominant spindle cell components. A notable exception was a testicular SLCT with morphologic features identical to the ovarian counterpart, which harbored a DICER1 mutation.
Read full abstract