AbstractWe prove that a strong solutionuto the Navier-Stokes equations on (0,T) can be extended if eitheru∈Lθ(0,T;U˙∞,1/θ,∞−α$\begin{array}{} \displaystyle \dot{U}^{-\alpha}_{\infty,1/\theta,\infty} \end{array}$) for 2/θ+α= 1, 0 <α< 1 oru∈L2(0,T;V˙∞,∞,20$\begin{array}{} \displaystyle \dot{V}^{0}_{\infty,\infty,2} \end{array}$), whereU˙p,β,σs$\begin{array}{} \displaystyle \dot{U}^{s}_{p,\beta,\sigma} \end{array}$andV˙p,q,θs$\begin{array}{} \displaystyle \dot{V}^{s}_{p,q,\theta} \end{array}$are Banach spaces that may be larger than the homogeneous Besov spaceB˙p,qs$\begin{array}{} \displaystyle \dot{B}^{s}_{p,q} \end{array}$. Our method is based on a bilinear estimate and a logarithmic interpolation inequality.
Read full abstract