Water pollution is the biggest challenge that has rendered existing water resources unusable due to contamination with antibiotics and heavy metals. Antibiotics are often used to treat bacterial diseases. Heavy metals, on the other hand, are micro-pollutants that pose a threat to aquatic systems, especially when they accumulate in nature. Increasing pollution and the uncontrolled use of antibiotics have exposed bacteria to non-lethal concentrations (sub-MIC), potentially leading to resistance. In this study, Kluyvera cryocrescens and Serratia fonticola were isolated from a freshwater source and characterised. The resistance profiles of the isolates to 16 antibiotics and 8 heavy metals were determined, revealing that they are multidrug-resistant. The effects of sub-MICs (MIC/2 and MIC/4) of antibiotics on biofilm formation, siderophore production, and cell morphology of bacteria were analysed. It was found that at some sub-MIC values of kanamycin, tetracycline, meropenem, erythromycin, and clarithromycin, biofilm formation by K. cryocrescens increased. An increase in biofilm production was also observed in S. fonticola at sub-MIC values of imipenem, meropenem, ceftazidime, ciprofloxacin, and clarithromycin. Moreover, significant morphological changes were observed in both isolates following treatment with meropenem, ciprofloxacin, and ceftazidime. After treatment with meropenem, the typical rod-shaped (bacillary) morphology of the isolates shifted to a round (coccoid) form. In contrast, the bacteria developed into long filaments after treatment with ciprofloxacin and ceftazidime. These changes in the bacteria may favour the development of resistance and pose challenges for the prevention and treatment of diseases. Therefore, it is crucial to understand how sub-MIC levels of antimicrobial agents alter the virulence properties of bacteria.
Read full abstract