Population-based surveillance was undertaken to determine clinical factors, susceptibility patterns, and incidence rates (IR) of Pseudomonas aeruginosa causing bloodstream infections (BSIs) in a Canadian region (2010-2018). We combined clinical data with genomics to characterize P. aeruginosa (BSIs) (n = 167) in a well-defined Canadian (Calgary) human population over a 9-year period (2010-2018). The annual population IR per 100,000 patient years increased from 3.4/100,000 in 2010 to 5.9/100,000 in 2018, with the highest IRs in elderly males from the hospital setting. Over a quarter of patients presented with febrile neutropenia, followed by urinary tract infections and pneumonia. Antimicrobial resistance (AMR) rates and determinants were rare. The P. aeruginosa population was polyclonal consisting of three dominant sequence types (STs), namely ST244, ST111, and ST17. Antimicrobial-susceptible ST244 was the most common clone and belonged to three clades (A, B, C). The ST244 IR/100,000 increased over time due to the expansion of clade C. Multidrug-resistant ST111 was the second most common clone and IR/100,000 decreased over time. ST111 belonged to three clades (A, B, C) with clade C containing blaVIM-2. Different serotypes were linked to various STs. The IR/100,000 of P. aeruginosa that belonged to serotypes O6 increased significantly over time. An effective multivalent vaccine consisting of five serotypes (O1, O3, O5, O6, O11) would confer protection to > 70% of Calgary residents with P. aeruginosa BSIs. This study has provided a unique perspective of the population dynamics over time of P. aeruginosa STs, clades, and serotypes responsible for BSIs.
Read full abstract