BackgroundAlcohol dependence (AD) is a common psychiatric disorder, often accompanied by anxiety and depression. These comorbidities are linked to disturbances in serotonin (5-HT) metabolism and gut microbiota dysbiosis. Clinical studies suggest that inulin, a prebiotic, can alleviate anxiety and depression in AD patients by affecting the gut microbiota, although the mechanisms remain unclear. PurposeThe purpose of this study is to investigate the potential mechanisms by which inulin, a prebiotic, improves anxiety and depression-like behaviors in AD withdrawal mice. This research is based on the drug and food homology and intestinal treatment of encephalopathy, with the goal of developing new clinical strategies for AD treatment. Study DesignFor this purpose, fecal samples from AD patients were analyzed to identify microorganisms associated with AD. An AD withdrawal mouse model was created, with inulin as the intervention and fluvoxamine maleate as the control. Techniques such as 16S microbiome sequencing and UPLC-TQMS-targeted metabolomics were used to assess gut microbiota, short-chain fatty acids (SCFAs) levels, and 5-HT metabolism. MethodsThe AD withdrawal model was built using the "Drinking-in-the-dark" protocol over 6 weeks. Inulin (2 g/kg/day) and fluvoxamine maleate (30 mg/kg/day) were administered for 4 weeks. The open field test, forced swim test, and tail suspension test were used to evaluate anxiety and depression-like behaviors in mice. ELISA and qRT-PCR assessed 5-HT metabolism in the colon, blood, and prefrontal cortex, while 16S microbiome sequencing analyzed changes in gut microbiota and UPLC-TQMS examined SCFAs levels. Immunohistochemistry was used to study intestinal barrier integrity. ResultsAD patients showed reduced SCFA-producing bacteria such as Faecalibacterium and Roseburia. In mice, AD withdrawal led to anxiety, depression-like behaviors, disrupted 5-HT metabolism, and gut microbiota dysbiosis. Inulin supplementation alleviated these behaviors, increased 5-HT and 5-hydroxytryptophan (5-HTP) levels, upregulated colonic tryptophan hydroxylase 1 (TPH1) expression, and promoted the growth of beneficial bacteria such as Faecalibacterium and Roseburia, while also increasing SCFAs levels. ConclusionInulin increases the abundance of Faecalibacterium and Roseburia, enhances SCFAs production, and regulates 5-HT metabolism, improving anxiety and depression-like behaviors in AD withdrawal mice. These findings suggest that inulin may serve as a nutritional intervention for mental health in AD patients by targeting the microbiome-gut-brain axis.
Read full abstract