The solitary endoparasitoid Meteorus pulchricornis can parasitize many lepidopteran host species successfully. In the case of parasitization of Pseudaletia separata, developmental duration of M. pulchricornis was 8–9 days from egg to larval emergence and 6 days from prepupa to adult emergence. Successful parasitism by M. pulchricornis decreased with host age. Following parasitization of day-0 4th host instar, the parasitoid embryo, whilst still enclosed in serosal cell membrane, hatched out of the egg chorion 2 days after oviposition. Subsequently, the 1st instar parasitoid emerged from the surrounding serosal cell membrane. Serosal cells dissociated and developed as teratocytes 3.5 days after oviposition. One embryo of M. pulchricornis gave rise to approximately 1200 teratocytes, a number that remained constant until 6 days after parasitization, but decreased drastically to 200 at 7 days post-oviposition. The teratocytes of M. pulchricornis were round- or oval-shaped and grew from 65 μm at 4 days to 200 μm in the long axis at 6 days post-parasitization. At 4 days post-parasitization, many cells or cell clusters with lipid particles were observed in the hemocoels of parasitized hosts. In addition, paraffin sections of parasitized hosts revealed that many teratocytes were attached to the host's fat body and contributed to disrupting the fat body tissue. Further, examination of the total hemocyte count (THC) during parasitization revealed that THC was maintained at low levels. Surprisingly, a temporal decrease followed by restoration of THC was observed in hosts injected with virus-like particles of M. pulchricornis (MpVLPs) plus venom, which contrasts with the constant THC suppression seen in parasitized hosts. This indicates that MpVLP function is temporal and is involved in regulation of the host during early parasitism. Therefore, teratocytes, a host regulation factor in late parasitism, could be involved in keeping THC at a low level.