This paper proposes a new topology for a brushless wound rotor synchronous machine (BL-WRSM) using a specially designed stator winding supplied through a single three-phase inverter. In this topology, a special stator winding, which comprises of two sets of series-connected windings with an unequal number of turns, is used to generate an additional spatial sub-harmonic component in the stator magneto-motive force (MMF). This additional sub-harmonic MMF (SH-MMF) component is utilized for exciting the field winding of the BL-WRSM. The advantage of the proposed brushless topology is the use of a single inverter compared to a dual inverter used in the existing dual inverter BL-WRSM. For the rotor, there are two separate windings: (1) harmonic winding and (2) field winding. Both the harmonic and field windings are connected in parallel with each other through a rotating rectifier. The additional SH-MMF component generates a rotating air-gap magnetic field, which induces the voltage in the harmonic winding. This induced voltage is then rectified and used to supply a dc current to the field winding. A 2-D finite element analysis is performed to analyze and verify the operating principle of this new BL-WRSM.
Read full abstract