Large-scale seasonal addition of limiting nutrients has been used for restoration in Kootenay Lake, British Columbia, since 1992 to mitigate cultural oligotrophication resulting from upstream hydropower development, river channelization, mysid shrimp introduction, and extensive tributary floodplain loss. Historical (1949) in-lake nutrient levels were targeted to stimulate bottom-up carbon transfer from native plankton communities to planktivorous and piscivorous fish populations that support popular fisheries. Analysis of 24 years of monitoring data assessed the effects of nutrient addition on the phytoplankton and zooplankton communities. Assessment involved comparisons of plankton community metric data from North Arm (1992–2003) and North + South arms (2004–2015) nutrient addition periods. A before–after, control–impact (BACI) analysis adjusted for these effects involved a series of phytoplankton and zooplankton metrics across the two lake arms. Time series analyses revealed significant serial correlation structure, significant increases in phytoplankton and zooplankton abundance and biomass, and increased stability within the phytoplankton and zooplankton communities. Results confirmed that adaptively managed nutrient restoration can effectively restore biological productivity and community structure in a large culturally oligotrophic lake.
Read full abstract