Traditional tactile brain–computer interfaces (BCIs), particularly those based on steady-state somatosensory–evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users’ selective tactile attention. The experimental protocol involved ten healthy subjects performing a tactile attention task, with EEG signals recorded from five EEG channels over the sensory–motor cortex. We employed sequential forward selection (SFS) of features from temporal sERP waveforms of all EEG channels. We systematically tested classification performance using machine learning algorithms, including logistic regression, k-nearest neighbors, support vector machines, random forests, and artificial neural networks. We explored the effects of the number of stimuli required to obtain sERP features for classification and their influence on accuracy and information transfer rate. Our approach indicated significant improvements in classification accuracy compared to previous studies. We demonstrated that the number of stimuli for sERP generation can be reduced while increasing the information transfer rate without a statistically significant decrease in classification accuracy. In the case of the support vector machine classifier, we achieved a mean accuracy over 90% for 10 electrical stimuli, while for 6 stimuli, the accuracy decreased by less than 7%, and the information transfer rate increased by 60%. This research advances methods for tactile BCI control based on event-related potentials. This work is significant since tactile stimulation is an understudied modality for BCI control, and electrically induced sERPs are the least studied control signals in reactive BCIs. Exploring and optimizing the parameters of sERP elicitation, as well as feature extraction and classification methods, is crucial for addressing the accuracy versus speed trade-off in various assistive BCI applications where the tactile modality may have added value.
Read full abstract