Endoplasmic reticulum (ER)-plasma membrane (PM) tethering is crucial for the non-vesicular lipid transport between the ER membrane and the PM. However, the PM-associated ER can impede the PM binding of cytoskeletons and other organelles. It is poorly understood how the competition between the ER and cytoskeletons/organelles on the PM is resolved. Here, we show that, upon septin collar assembly, ER-PM tethering proteins are excluded from the yeast bud sites, and the PM-associated ER is locally detached from the PM. Our results suggest that PM flows by polarized exocytosis extrude PM proteins, including ER-PM tethering proteins, from the bud sites. When the reorganization of the ER-PM tethering was inhibited by exocytosis repression, septin localization was restricted to the PM sites poor in ER-PM tethering proteins. This study proposes machinery reconciling ER-septin competition on the PM, providing mechanistic insights into the spatial organization of PM-associated organelles and cytoskeletons.
Read full abstract