Voices arguably occupy a superior role in auditory processing. Specifically, studies have reported that singing voices are processed faster and more accurately and possess greater salience in musical scenes compared to instrumental sounds. However, the underlying acoustic features of this superiority and the generality of these effects remain unclear. This study investigates the impact of frequency micro-modulations (FMM) and the influence of interfering sounds on sound recognition. Thirty young participants, half with musical training, engage in three sound recognition experiments featuring short vocal and instrumental sounds in a go/no-go task. Accuracy and reaction times are measured for sounds from recorded samples and excerpts of popular music. Each sound is presented in separate versions with and without FMM, in isolation or accompanied by a piano. Recognition varies across sound categories, but no general vocal superiority emerges and no effects of FMM. When presented together with interfering sounds, all sounds exhibit degradation in recognition. However, whereas /a/ sounds stand out by showing a distinct robustness to interference (i.e., less degradation of recognition), /u/ sounds lack this robustness. Acoustical analysis implies that recognition differences can be explained by spectral similarities. Together, these results challenge the notion of general vocal superiority in auditory perception.