A task as simple as holding a cup between your fingers generates complex motor commands to finely regulate the forces applied by muscles. These fine force adjustments ensure the stability and integrity of the object by preventing it from slipping out of grip during manipulation and by reacting to perturbations. To do so, our sensorimotor system constantly monitors tactile and proprioceptive information about the force object exerts on fingertips and the friction of the surfaces to determine the optimal gripforce. While the literature describes the transient responses, humans can generate to react to perturbations in load force, it is yet to be determined if humans can also react to abrupt changes in friction while already holding an object. Only recently technology using imperceivable ultrasonic vibrations became available to modulate friction in real time to investigate thisquestion. In this study, we used an object with an integrated friction modulation device suspended in a pulley system controlling the load. With this device, we explored the rapid adaptation of the sensorimotor system to changes in friction alone and in combination with changes in load. When load force and friction changed simultaneously, the grip force response was regulated based on the grip safety requirements. Participants increased their grip force in response to decrease in friction. However, they did not adjust their grip force when the friction increased, which is expected based on our biomechanical model of friction sensingmechanisms. KEY POINTS: Simple tasks like pouring water into a glass mobilize intricate interactions between fingertip sensory inputs and motor commands to account for the weight change and friction. It has been investigated how humans react to force perturbations when holding an object, but very little is known about how frictional changes are sensed and acted upon while holding an object, for example, due to sweating or condensation. We engineered a unique experimental object that utilizes imperceivable ultrasonic vibrations to change the frictional properties of the surface in a few milliseconds. This apparatus enabled us to study how human subjects react to change of friction when gripping or holding an object. We showed that humans adjust the strength of their grasp when forces in the direction of gravity either increase or decrease; however, frictional change evokes adjustments only when friction decreases.
Read full abstract