Context: Doxorubicin (DOX)-loaded folate-targeted poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) [P(HB-HO)] nanoparticles [DOX/FA-PEG-P(HB-HO) NPs] were prepared by the W1/O/W2 solvent extraction/evaporation method for applications in cancer treatment. However, the biodistribution, pharmacokinetics, and targeting of the nanoparticles (NPs) have not yet been studied.Objective: The biodistribution, pharmacokinetics, and targeting of DOX/FA-PEG-P(HB-HO) NPs were evaluated in female BALB/c nude mice bearing HeLa tumors.Materials and methods: Three DOX formulations were injected into the tail vein of the mice at a dosage of 5 mg/kg. At each time point, blood and various tissues were collected. All samples were then processed and analyzed by a validated high performance liquid chromatographic (HPLC) method.Results: The t1/2 values of DOX/P(HB-HO) NPs and DOX/FA-PEG-P(HB-HO) NPs were 2.7- and 3.5-times higher than that of free DOX. No significant difference (p > 0.05) was found in Cmax between the NPs and free DOX. The Tmax values of the two NPs were prolonged from 0.25 to 1 h. The AUC0–t values were 1.55- and 3.05-folds higher than that of free DOX, and MRT increased to 15.99 h for DOX/P(HB-HO) NPs and 25.14 h for DOX/FA-PEG-P(HB-HO) NPs. For DOX/FA-PEG-P(HB-HO) NPs, the DOX content in the tumors were 10.81- and 3.33-times higher than those for free DOX and DOX/P(HB-HO) NPs at 48 h, respectively.Discussion and conclusions: DOX/FA-PEG-P(HB-HO) NPs displayed reduced cardiac toxicity and improved bioavailability. Moreover, the NPs exhibited a significant extent of DOX accumulation in the tumors, thus suggesting that folate-targeted NPs could effectively transport into HeLa tumors with satisfying targeting.
Read full abstract