The roles of α-synuclein in neurotransmitter release in brain neurons and in the Parkinson's disease condition have challenged comprehensive description. To gain insight into molecular mechanistic properties that actuate α-synuclein function and dysfunction, the coupled protein and solvent dynamics of oligomer and fibril forms of human α-synuclein are examined in a low-temperature system that allows control of confinement and localization of a motionally sensitive electron paramagnetic resonance spin probe in the coupled solvent-protein regions. The rotational mobility of the spin probe resolves two distinct α-synuclein-associated solvent components for oligomers and fibrils, as for globular proteins, but with dramatically higher fluidities at each temperature, that are comparable to low-confinement, aqueous-cryosolvent mesophases. In contrast to the temperature-independent volumes of the solvent phases that surround globular and condensate-forming proteins, the higher-fluidity mesophase volume of α-synuclein oligomers and fibrils decreases with decreasing temperature, signaling a compression of this phase. This unique property and thermal hysteresis in the mobilities and component weights, together with previous high-resolution structural characterizations, suggest a model in which the dynamically disordered C-terminal domain of α-synuclein creates a compressible phase that maintains high fluidity under confinement. Robust dynamics and compressibility are fundamental molecular mechanical properties of α-synuclein oligomers and fibrils, which may contribute to dysfunction and inform about function.
Read full abstract