When the electrochemiluminescence (ECL) reaction occurs at a triggering potential beyond ±1.0 V, the interference from the adverse oxidation-reduction reaction cannot be ignored. However, currently reported anode ECL usually occurs above +1.0 V. This study innovatively developed a convenient and simple step pulse (SP) method to modulate the low ECL triggering potential of poly [(9,9-dioctyl-fluorenyl-2,7-diacyl)-alt-co-(9-hexyl-3,6-carbazole)] (PFA) nanoparticles (NPs). Compared to cyclic voltammetry with a triggering potential exceeding +1.25 V for PFA NPs, SP scanning enabled PFA NPs to exhibit a strong and stable ECL emission with a triggering potential as low as +0.75 V and tripropylamine (TPrA) as a coreactant. PFA NPs coupled an efficient aptameric recognition-driven cascade nucleic acid amplification strategy to construct a sensitive biosensing platform for measuring phosphorylated Tau (p-Tau) protein as an Alzheimer's disease biomarker. p-Tau could release the secondary target (ST) chain through the aptameric recognition reaction with the aptamer, and the released ST could further trigger cascade catalytic hairpin assembly (CHA) and rolling circle amplification (RCA) at the PFA NP-modified electrode, producing a large number of long chains. The large amount of G-quadruplex/hemin formed by long chains and hemin will consume the ECL quencher H2O2 added in detection solution, thereby restoring the ECL signal and enabling the low potential quantitative analysis of p-Tau with a limit of detection of 4.15 fg/mL. SP technique provides a new way to reduce ECL triggering potential, and PFA NPs create a promising low-triggering potential ECL-sensing platform for bioanalysis.
Read full abstract