Previously, chitosan reduces the senescence-related phenotypes in human foreskin fibroblasts through the transforming growth factor beta (TGF-β) pathway, and enhances the proliferation and migration capabilities of these cells are demonstrated. In this study, we examined whether the senescence-delaying effect of chitosan could be applied to primary knee-related fibroblasts, such as human synovial membrane derived cells (SCs) and anterior cruciate ligament fibroblasts (ACLs). These two types of cells were obtained from donors who needed ACL reconstruction or knee replacement. We found that chitosan treatment effectively reduced aging-associated β-galactosidase (SA-β-gal)-positive cells, downregulated the expression of senescence-related proteins pRB and p53, and enhanced the 5-bromo-2'-deoxyuridine (BrdU) incorporation ability of SCs and ACLs. Moreover, chitosan could make SCs secret more glycosaminoglycans (GAGs) and produce type I collagen. The ability of ACLs to close the wound was also enhanced, and the TGF-β and alpha smooth muscle actin (αSMA) protein expression decreased after chitosan treatment. In summary, chitosan not only delayed the senescence but also enhanced the functions of SCs and ACLs, which is beneficial to the application of chitosan in cell expansion in vitro and cell therapy.
Read full abstract