This study uses polyethylene (PE) with fly ash (FA), another industrial waste, to produce cementitious polymer-based product. PE was incorporated into FA in various mass compositions by hot-pressing under temperatures up to 125 °C and compaction pressures reaching 50 MPa. Their mechanical and chemical properties and morphologies were investigated to establish their applications. Although the heat treatment applied during hot-pressing was lower than the melting temperature of PE (132.6 °C), a sturdy yet lightweight product of 1 PE:2 F A was obtained with 30 MPa of compressive strength, 15 MPa of flexural strength, higher ductility, and a density of only 1453 kg/m3. The crystallinity of the specimens (from 70 % to 90 %) was observed through differential scanning calorimetry. Although direct chemical bonding between PE and FA did not result in, physical interactions due to high compaction pressures, as implied by the robust interlocking of semi-crystalline PE, the micro-spherical shape of FA particles improved the strength.
Read full abstract