The Hecht equation is often used to calculate the mobility–lifetime product ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mu } {\tau }$ </tex-math></inline-formula> ) of semiconductors by assuming a uniform electric field based on the Shockley–Ramo theory. However, the Schottky contacts are usually found at high resistivity semiconductor/metal interface, leading to a nonuniform electric field inside the bulk semiconductor. We used a slice model instead of the Hecht equation to calculate the charge collection efficiency (CCE) and found that the CCE in a nonuniform field can deviate significantly from that given by the Hecht equation in a uniform field, with the difference relying heavily on the space charge distribution and the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mu } {\tau }$ </tex-math></inline-formula> value. For semiconductors with a high ionized acceptor impurity concentration of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$5\,\, \times 10^{9}$ </tex-math></inline-formula> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−3</sup> , such as MAPbI <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> , the electron <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mu } {\tau }$ </tex-math></inline-formula> value may be seriously underestimated when adopting the Hecht equation assuming a uniform field. The invalid application of the Hecht equation for a Schottky interface may be one of the possible reasons for the underestimation of electron <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mu } {\tau }$ </tex-math></inline-formula> value for p-type perovskite materials with relatively low resistivity.
Read full abstract