We give necessary and sufficient conditions for a regular semi-Dirichlet form to enjoy a new Feller type property, which we call weak Feller property. Our characterization involves potential theoretic as well as probabilistic aspects and seems to be new even in the symmetric case. As a consequence, in the symmetric case, we obtain a new variant of a decomposition principle of the essential spectrum for (the self-adjoint operators induced by) regular symmetric Dirichlet forms and a Persson type theorem, which applies e.g. to Cheeger forms on mathsf {RCD^*} spaces.
Read full abstract