Background: The challenge to food security posed by climate change and coupled with the substantial rise in the global population, necessitate a shift in crop improvement programmes towards developing crop cultivars with stable and high yield potentials across a wide range of agro-ecological conditions. Methods: New high yielding crop varieties with stable performance across environments are enabling the expansion of their production area into non-traditional environments with semi-arid climates. Soybean (Glycine max L.), a tropical leguminous crop, has received significant attention as a target crop in breeding programmes for adaptation to semi-arid environments, due to its low water content, high nutritive value and the capacity to produce a variety of products. The objective of this study was to asses yield performance and stability of promising soybean genotypes under contrasting environments in the semi-arid zone of Sudan. We evaluated five soybean genotypes using a split plot design with environment as the main plot and genotype as the subplot. Result: Combined ANOVA showed significant differences among the genotypes, environment and genotype x environment interaction. Moreover, significant positive relationships were observed between seed yield and number of days to 95% flowering, 100-seed weight, leaf area and number of pods per plant. AMMI stability values revealed significant differences among the genotypes and genotype-by-environment main effects for seed yield. Similarly, results of GGE biplot showed significant contributions of genotypes and genotype-by-environment main effects. The stability models enabled us to identify genotypes with superior performance to specific environments. TGX 1904-6F, was found to be the most stable genotype with appreciable seed yield and adaptability across all environments that can be recommended for release to farmers in semi-arid Sudan.