Non-coding RNAs (ncRNAs) have long been considered the "white elephant" on the genome because they lack the ability to encode proteins. However, in recent years, more and more biological experiments and clinical reports have proved that ncRNAs account for a large proportion in organisms. At the same time, they play a decisive role in the biological processes such as gene expression and cell growth and development. Recently, it has been found that short sequence non-coding RNA(miRNA) and long sequence non-coding RNA(lncRNA) can regulate each other, which plays an important role in various complex human diseases. In this paper, we used a new method (JSCSNCP-LMA) to predict lncRNA–miRNA with unknown associations. This method combined Jaccard similarity algorithm, self-tuning spectral clustering similarity algorithm, cosine similarity algorithm and known lncRNA–miRNA association networks, and used the consistency projection to complete the final prediction. The results showed that the AUC values of JSCSNCP-LMA in fivefold cross validation (fivefold CV) and leave-one-out cross validation (LOOCV) were 0.9145 and 0.9268, respectively. Compared with other models, we have successfully proved its superiority and good extensibility. Meanwhile, the model also used three different lncRNA–miRNA datasets in the fivefold CV experiment and obtained good results with AUC values of 0.9145, 0.9662 and 0.9505, respectively. Therefore, JSCSNCP-LMA will help to predict the associations between lncRNA and miRNA.
Read full abstract