Alpha-band activity is thought to be involved in orchestrating neural processing within and across brain regions relevant to various functions such as perception, cognition, and motor activity. Across different studies, attenuated alpha-band activity has been linked to increased neural excitability. Yet, there have been conflicting results concerning the consequences of alpha-band modulations for early sensory processing. We here examined whether movement-related alterations in visual alpha-band activity affected the early sensory processing of visual stimuli. For this purpose, in an EEG experiment, participants were engaged in a voluntary finger-tapping task while passively viewing flickering dots. We found extensive and expected movement-related amplitude modulations of motor alpha- and beta-band activity with event-related-desynchronization (ERD) before and during, and event-related-synchronization (ERS) after single voluntary finger taps. Crucially, while a visual alpha-band ERS accompanied the motor alpha-ERD before and during each finger tap, flicker-evoked Steady-State-Visually-Evoked-Potentials (SSVEPs), as a marker of early visual sensory gain, were not modulated in amplitude. As early sensory stimulus processing was unaffected by amplitude-modulated visual alpha-band activity, this argues against the idea that alpha-band activity represents a mechanism by which early sensory gain modulation is implemented. The distinct neural dynamics of visual alpha-band activity and early sensory processing may point to distinct and multiplexed neural selection processes in visual processing.