We have studied experimentally the interaction of isolated needle-like domains created in an array via local switching using a biased scanning probe microscope (SPM) tip and visualized via piezoelectric force microscopy (PFM) at the non-polar cuts of MgO-doped lithium niobate (MgOLN) crystals. It has been found that the domain interaction leads to the intermittent quasiperiodic and chaotic behavior of the domain length in the array in a manner similar to that of polar cuts, but with greater spacing between the points of bias application and voltage amplitudes. It has also been found that the polarization reversal at the non-polar cuts and domain interaction significantly depend on humidity. The spatial distribution of the surface potential measured by Kelvin probe force microscopy in the vicinity of the charged domain walls revealed the decrease of the domain length as a result of the partial backswitching after pulse termination. The phase diagram of switching behavior as a function of tip voltage and spacing between the points of bias application has been plotted. The obtained results provide new insight into the problem of the domain interaction during forward growth and can provide a basis for useful application in nanodomain engineering and development of non-linear optical frequency converters, data storage, and computing devices.