Regenerative medicine amalgamates stem cell technology and tissue engineering strategies to replace tissues and organs damaged by injury, aging, ailment, and/or chronic conditions by leveraging the innate self-healing mechanism of the body. The term ‘regenerative medicine’ was coined by William A. Haseltine during a 1999 conference on Lake Como. Since its inception in 1968, the field has offered clinical benefits for the regeneration, repair, and restoration of bones, skin, cartilage, neural tissue, and the heart, as well as scaffold fabrication. The field of tissue engineering and regenerative medicine can vastly benefit from advancements in nanoscience and technology, particularly in the fabrication and application of inorganic-based nanoparticles and bionanomaterials. Due to the tunable intrinsic properties, i.e., size, topography, surface charge, and chemical stability, inorganic-based nanoparticles and biomaterials have surpassed traditional synthetic materials. Given the wide gamut of near-future applications of inorganic nanoparticles and biomaterials, this article gives an overview of the emerging roles in stem cell regenerative research, tissue engineering, artificial skin and cartilage regeneration, neural nerve injuries, 3D bioprinting, and development of new inorganic bio-scaffolds. The review also addresses the challenges related to the clinical application and tissue compatibility of inorganic nanoparticles and biomaterials, utilizing current state-of-the-art techniques.
Read full abstract