The condensation reactions of 4,4'-(ethane-1,2-diylbis (oxy)) bis(3-methoxybenzaldehyde) (VV) with cystamine, 1,6-hexamenthylene diamine, and a dimer diamine (PriamineTM 1075) produced three types of vanillin-derived imine-and disulfide-containing diamines (VC, VH, and VD, respectively). Thermal curing reactions of polyglycerol polyglycidyl ether with VD and mixtures of VC/VD and VH/VD produced bio-based epoxy vitrimers (BEV-VD, BEV-VC/VD, and BEV-VH/VD, respectively). The degree of swelling and gel fraction tests revealed the formation of a network structure, and the crosslinking density increased with a decreasing VD fraction. The glass transition temperature, tensile strength, and tensile modulus of the cured films increased as the VD fraction decreased. In contrast, the thermal degradation temperature of the cured films increased as the VD fraction increased. All the cured films were healed by hot pressing at 120 °C for 2 h under 1 MPa at least three times. The healing efficiencies, based on tensile strength after the first healing treatment, were 75-78%, which gradually decreased as the healing cycle was repeated. When imine-and disulfide-containing BEV-VC/VD and imine-containing BEV-VH/VD with the same VC/VD and VH/VD ratios were used, the former exhibited a slightly higher healing efficiency.