In automotive audio playback systems, dynamically increasing driving sounds are typically taken into account by applying a generic, i.e., non-individualized, increase in overall level and low-frequency amplification to compensate increased masking. This study investigated the degree of individuality regarding the preferences of noise-dependent level and equalizer settings. A user study with 18 normal-hearing participants was conducted in which individually preferred level-dependent and frequency-dependent amplification parameters were determined using a music-based procedure in quiet and in nine different driving noise conditions. The comparison of self-adjusted parameters suggested that, on average, participants adjusted higher overall levels and more low-frequency amplification in noise than in quiet. However, preferred self-adjusted levels differedmarkedly between participants for the same listening conditions but were quite similar in a re-test session for each participant, indicating that individual preferences were stable and could be reproducibly measured with the employed personalization scheme. Furthermore, the impact of driving noise on individually preferred settings revealed strong interindividual differences, indicating that listeners can differ widely with respect to their individual optimum of how equalizer and level settings should be dynamically adapted to changes in driving conditions.
Read full abstract