We present a much shorter and streamlined proof of an improved version of the results previously given in [A. Posilicano: On the Self-Adjointness of H+A∗+A\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H+A^{*}+A$$\\end{document}. Math. Phys. Anal. Geom.23 (2020)] concerning the self-adjoint realizations of formal QFT-like Hamiltonians of the kind H+A∗+A\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H+A^{*}+A$$\\end{document}, where H and A play the role of the free field Hamiltonian and of the annihilation operator respectively. We give explicit representations of the resolvent and of the self-adjointness domain; the consequent Kreĭn-type resolvent formula leads to a characterization of these self-adjoint realizations as limit (with respect to convergence in norm resolvent sense) of cutoff Hamiltonians of the kind H+An∗+An-En\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H+A^{*}_{n}+A_{n}-E_{n}$$\\end{document}, the bounded operator En\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$E_{n}$$\\end{document} playing the role of a renormalizing counter term. These abstract results apply to various concrete models in Quantum Field Theory.
Read full abstract