Catalytic hydrogenation of alkynes to alkenes is pivotal in both petrochemical and fine chemical industries. Its implementation relies on the use of transition metals, especially those precious Pd-based catalysts. In this work, we utilize a melt infiltration method to prepare magnesium oxide-supported potassium hydride (KH/MgO), which is illustrated as a transition-metal-free catalyst for selective hydrogenation of alkynes. H2-D2 exchange experiment proves that dihydrogen activation and dissociation on KH/MgO is plausible at room temperature and ambient pressure. KH/MgO catalyzes hydrogenation of diphenylacetylene (DPA) already at 40 ℃, implying its high intrinsic activity at very mild conditions. Under an optimized condition of 80°C, 2 bar H2, and 40 h, 75 % conversion of DPA is achieved, affording 82 % selectivity to stilbenes. Mechanistic study suggests that surface hydride on KH/MgO plays an important role toward dihydrogen activation, and involved in the hydrogenation step to form stilbenes. This work shows the promise for using light metal hydrides consisting of earth-abundant elements as alternative hydrogenation catalysts.
Read full abstract